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Abstract - Fault arc models are increasingly important for design of 
modern power system protection algorithms. Several solutions 
were reported in the literature but no comparisons of the behaviour 
were given. Furthermore, in fact, while all models are based on 
solving a differential equation where the conductance of the arc is 
unknown, not much of the conductance was reported the main 
concerns being oriented towards the voltage, current and power of 
the arc. This paper thus initially presents electrical circuits that 
implement existing arc model equations. Namely, a circuit in which 
one node voltage equals the arc conductance is developed for every 
model. These then were simulated and the resulting arc 
conductances are reported and compared here. 
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1. INTRODUCTION 

Arcing faults in power systems can cause considerable 
damage, even explosions, despite the installed protection 
system [1] [2]. In fact numerous failures occurring in these 
systems may be attributed to arcing which in its initial stage 
leads to fault currents between two conductors. Depending 
on the parameters of the electrical network, such as power 
source and equivalent impedance, these failures may lead to 
stable arcs provided both the protection system fails to 
activate and no self-extinguishing process is started. After 
arc extinction and reenergizing the system, the phenomenon 
can reappear, depending on the level of the driving voltage 
and the load current, and also depending on the performance 
of the partly damaged insulation, characterized by its 
thickness and chemical composition.  

Thus the diagnosis and location of such a fault when it 
occurs or, even better, correct prediction before it fully 
develops, is of prime importance for proper maintenance and 
protection of the power distribution system. Crucial to the 
development of any diagnostic and fault prediction system 
is a simulator that supplements difficult, disruptive, and 
expensive experiments on real LV power systems. Vital to 
the simulator, in turn, are models that capture the properties 
of the specific components of the system and when 
instantiated behave as faithfully as the real components as 
possible. Such models must be accurate, so one may depend 
on the simulation results; must be robust, putting no limits 
to realistic signal's amplitudes and waveforms; must be 
simple, enabling fast simulation of complex systems to 
which the modelled device belongs; and be easy to represent 

in software in a form convenient for frequent instantiation. 

One may now categorize the existing models, already 
mentioned in the Introduction, into the following groups: 

1. The high impedance model (HI), described by an 
equation of the form 

(1) G(t)=f(G0,τ,t); 

2. The models describing electro-thermal dynamics of 
the arc described by an equation of the form 
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c being a set of constants; 

3. The non-equilibrium models described by an equation 
of the form 
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4. The model involving ablation described by an equation of 
the form 
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The following notation was used: t for the time variable, G 
for the arc conductance, G0 for its initial value, i(t) for the 
arc current, v(t) for the arc voltage, P(t) for the arc power, 
L(t) for the arc length, and S(t) for the arc area. 

From electrical modelling and simulation point of view there 
is a fundamental difference between the first one and the last 
three. Namely, if the HI model is to be implemented the arc 
conductance will start with zero (open circuit) and will rise 
to a prescribed value (G0) no matter what happens with the 
currents and voltages. In the rest of the cases the 
conductance stars with some initial value (which may be 
high) and, depending on the model and the model 
parameters, rises or decreases in time.  

The existing models as given in the literature [3] [4] [5] [6] 
were first studied from the applicability in a circuit form. 
Having in mind that (3) in fact represents one differential 
equation containing time derivatives of two different 
variables we first excluded (3) as candidate for circuit 
modelling. Then, we supposed that the arc length and the arc 
area are constant reducing (4) into (2). Therefore, (1) and (2) 
were left and used for further study. 
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Electrical circuits convenient for implementation in circuit 
simulators recognizing behavioural descriptions were 
developed for every single arc model found in the literature. 
These were then simulated while excited by a sinusoidal 
voltage source of amplitude of 380 V and of power 
frequency of 50 Hz having internal resistance of 1 mΩ. As a 
simulation results the solutions of (1) or (2) were taken and 
demonstrated here. To make the comparison adequate equal 
or similar parameter values were used for different model in 
the largest possible extent.  

Since, to our best knowledge, no reports of this kind were 
published we consider the results depicted below as an asset 
to build on, so no special comments on the appropriateness 
of any of them were given. 

The analysis will follow the order already established in the 
literature such as [4] [5]. To get feeling as to what are the 
differences between the models and to save space simulation 
results will be given on one figure only. 

It is important to note that these models were developed with 
an intention to simulate arcs in the open (including air, 
vacuum, and oil as an environment). That means they are 
supposed to be fed by a source of very low resistance. To 
allow for that, in the simulations reported here, internal 
resistance of the proper voltage source of 1 mΩ was used. 

The paper is structured so that the models are visited in 
succession and circuits are proposed for each one of them. 
Then simulation results are given collectively.  

2. CREATION OF THE ARC MODEL AND SIMULATION 
RESULTS 

In this section a review of the existing models will be given. 
For every one of them a circuit will be proposed that enables 
implementation of the model within a circuit simulator.  

2.1 The high impedance model (HI) 

A time varying conductance reported in [6] and 
implemented also in [7] [8] [9] may be used to model the arc 
occurring between two power lines or between a line and 
ground. Namely, it is proposed that the arc conductance is 
obeying the following differential equation 
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where G0 and τ are model parameters.  

 
Figure 1. Resistive circuit modelling the nonlinear 

conductance given by (2) 

The solution of this equation is  
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As can be seen, in this case, the value of the arc conductance 
at the beginning of arcing is zero, meaning infinite 
resistance, and ends up at the end of the arcing process with 
the value G0 which is a model parameter usually obtained by 
measurement. τ is the other parameter which may here be 
interpreted as the time constant of the arcing and, again, 
obtained by measurement.  

This conductance may be modelled by the circuit of Fig. 2 
where 

(3) 21 vvi ⋅=  
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We assume that the arcing starts not at the very beginning of 
the simulation which means that the time variable in (1) is 
not the real time but a new variable shifted to the arcing 
instant. To create a time variable that starts with zero at t0 
and ends with Δt=t1-t0 at t1 the circuit of Fig. 2 may be used.  

 
 

Figure 2. A circuit generating a voltage proportional to 
time. t1>t0. 

For this circuit one may state that 
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Here t0 is the time instant when the fault occurs while Δt= 
t1-t0 is the duration of the fault. One may say that a 
protective device was activated (or some other remedial 
action was undertaken) at t1. In that way, if we substitute t 
by v(t) in (4), we will have a time dependent conductance 
that starts changing at t0 and falls back to zero at t1.  

In the subsequent simulation experiments t0=50 ms, t1=150 
ms and C=1 F were used.  

 
Figure 3. Electrical circuit generating the solution of the 

differential equation governing the arcing process 

In order to unify the simulation, however, instead of using 



the closed form expression for the conductance given by (2) 
we will use a circuit that solves the differential equation (1) 
during the simulation. To that end the circuit of Fig. 3 was 
used. In this case we have 

(6a) 21 vvi ⋅=  

(6b) ))((
τ
1

02 tGGi −= . 

To implement the model for verification and testing 
purposes we used the circuit depicted in Fig. 4. It consists of 
a sinusoidal source with internal resistance R0, and a switch 
that activates the arc at t=t0 and deactivates it at t=t1. 

 
Figure 4. The simple circuit used for verification and 

characterization of the model 

The simulation results for this type of arc model are depicted 
in Fig. 5 (denoted by 1). G0=100 S and τ=0.04 s were used.  

2.2 The Cassie model 

This model was first published in [10]. It is expressed in 
the following form:  
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Note that since, at v(0)=0, 
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G(0) determines the initial value of the conductance (which 
is not specified by the model as such), while -G(0)/τ 
represents its slope at the origin. Accordingly, the model is 
defined by three parameters: τ, Vc, and G(0). 

With reference to Fig. 3, in this case we have 

(9a) 21 vvi ⋅=  

(9b) 2
22

c
22

τ

1
τ
1 vv

V
vi ⋅⋅

⋅
+⋅−= . 

The value of G(t) corresponding to the one expressed by (7), 
obtained by running the circuit of Fig. 4 by SPICE, is 
depicted in Fig. 5 denoted by 2. The following parameters 
were used for this simulation: R0=1 mΩ, G0=100 S, τ=10 

ms, and 10002 =CV V.  

 
Figure 5. Conductance G(t) for various models 
1. High impedance model 
2. Cassie model 
3. Schewemacher model 
4. Schwarz model 
5. Mayr model 
6. Modified Mayr model 
7. Habedank model   

It is important to note that Equ. (9) has a solution 

(10)  G(t)=G(0)∙e-t/τ 

even in the absence of any voltage at the arc terminals. That 
means that exponential decay of the arc conductance is 
expected since, after breakdown, one may expect v(t)<Vc or 
even v(t)<<Vc and (10) is practically governing the process. 

It also means that, in the case of a short duration of the arc, 
the time of activation of the arc should be set to zero at the 
activation moment and, after the arc is extinguished, the 
capacitor (In Fig. 3) should be short-circuited to discharge.  

2.3 The Schwarz arc model  

The Schwarz arc model [11] may be expressed as:  
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where P is the cooling constant, while a and b are constants. 
It is a four parameter model which may be stated as a black-
box since the parameters a and b have no physical 
interpretation. a and b are in fact fitting parameters. 

For circuit simulation it will be expressed schematically on 
the same way as the Cassie circuit i.e. by Fig. 3, while the 
corresponding current sources will be expressed in the 
following way 
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The value of G(t) corresponding to the one expressed by 
(11), obtained by running the circuit of Fig. 4 by SPICE, is 



depicted in Fig. 5 denoted by 4. The following parameters 
were used for this simulation: R0=1 mΩ, G0=100 S, τ=100 
ms, and P=1 W, a=0.1 and b=0.15. 
 
2.4 Model Mayr model and modified Mayr 
 
This model was frequently implemented [11] [12] [13] [4]. 

The original Mayr equation is as follows: 
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Using the circuit of Fig. 3 one may express the model as 

(14a) 21 vvi ⋅=  

(14b) 22
2

0
22 τ

1
τ
1 vv

P
vi ⋅⋅

⋅
+⋅−= . 

The value of G(t) corresponding to the one expressed by 
(13), obtained by running the circuit of Fig. 4 by SPICE, is 
depicted in Fig. 5 denoted by 4. The following parameters 
were used for this simulation: R0=1 mΩ, G0=100 S, τ=10 
ms, and P=100 W. 

The modified Mayr model [14] is described by the following 
equation  
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The corresponding controlled sources of Fig. 3, now are 
(16a) 21 vvi ⋅=  
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The value of G(t) corresponding to the one expressed by 
(15), obtained by running the circuit of Fig. 4 by SPICE, is 
depicted in Fig. 5 denoted by 6. The following parameters 
were used for this simulation: R0=1 mΩ, G0=100 S, τ=10 
ms, C=50 V, and P=1000 W. 

2.5 The Habedank Model 

The model equations proposed by Habedank [15] are  
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where Gc(t) is the arc conductance in the Cassie equation, τc 

is the Cassie time constant, Gm(t) is the arc conductance in 
the Mayr equation, τm is the Mayr time constant and P0 is a 
constant. In fact here one has two nonlinear time dependent 
mutually coupled conductances in a system with six free 
parameters: τc, Vc, Gc(0) and τm, Vm, Gm(0). That is a 
serious challenge from the parameter extraction and 
implementation point of view since positive feedback may 
be set for some combination of the parameters. 

To get the circuit representation of this series connection we 
will first substitute resistances in place of the conductances. 
In that way the Habedank model will be expressed as 
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(18c) R(t)=Rc(t)+Rm(t). 

For a given port voltage (v) the solution of this pair of 
equations is obtained as the port current (i) of the circuit 
depicted in Fig. 6. 
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Figure 6.  Circuit implementing the Habedank arc model 

Here we have 
(19a)  vc=i∙Rc(t) 
(19b)  vm=i∙Rm(t) 
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The value of G(t) corresponding to the reciprocal of the one 
expressed by (18), obtained by running the circuit of Fig. 4 
by SPICE, is depicted in Fig. 5 denoted by 7. The following 
parameters were used for this simulation: G0=100 S, 

τc=τm=100 ms, and P0=1000 W, 10002
c =V  V2,

== )0()0( mc RR 10 mΩ. 

2.6 The Schavemaker model 

The Schavemaker model [14] is described by the following 
equation  
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This model is specific since it uses an approximating 
function with discontinuous derivative. From that point of 
view it is interesting and challenging for circuit 
implementation.  

For implementation of this model one may use the circuit of 
Fig. 3 again with the following: 
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Figure 7. The comparator 

To complete the circuit a comparator is needed producing an 
output voltage Vout such that 
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(22b) Vout=0, otherwise.  

Based to that the current i3 was calculated as 

(23) 
( ) ( )ivCPViVV

i
⋅⋅+⋅−+






 ⋅⋅

=

0out
2

arcout
3

1

1
. 

The comparator circuit used to create Vout of (22) is depicted 
in Fig. 7.  

The value of G(t) corresponding to the reciprocal of the one 
expressed by (18), obtained by running the circuit of Fig. 4 
by SPICE, is depicted in Fig. 5 denoted by 3. The following 
parameters were used for this simulation: τ=10 ms, P0=100 
W; Cint=50 Varc=1000 V G0=100 S. 

4. CONCLUSION 

Implementation of the arc model equation in a form of 
electrical circuit is of crucial importance from the simulation 
point of view. Namely, when such circuit models are 
available, fault simulation is enabled for complex power 
systems including bus-bars, switchgears, power lines, 
cables, transformers etc. That in turn allows for successful 
design and maintenance of the grid.  

Various models proposed in the literature were implemented 
here and simulated by the SPICE simulator. It is important, 
however, to have in mind here that the models described 

may be used in any circuit simulator allowing for 
behavioural controlled sources to be used. 

The simulation results show that by using different models 
different real-life situations may be captured and proper 
simulation to be performed. Having that in mind one is not 
in situation to give any recommendations or comparison of 
the model described as far. 
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